開課班級Class: 授課教師Teacher: 學分數Credits:
四財金學士學程二A 賴佳瑜 2
課程大綱Course Description:
現今快速發展之金融科技,將許多傳統的金融分析方法轉換成金融的科技,其中三種最熱門的投資項目為付款,群眾募資與借貸及金融資料分析方法。本課程將著重於其中之金融資料分析方法將討論量化投資的應用,金融之量化投資是在投資的各個階段中,利用數學、統計、機器學習等分析工具來建立預測模型。本課程旨在對量化投資作廣泛與初步的介紹,並佐以R語言實作,希冀學生能藉此課程對資訊科技與金融結合應用。
English Outline:
The rapid emergence of FinTech has turned conventional approaches to financial technology by three popular investment categories: payments, lending/crowdfunding, and data & analytics. The objective of this course is to explore financial data mining based on quantitative trading data. Data Mining in Finance presents a comprehensive overview of major algorithmic approaches to build predictive models, including mathematics, statistical, machine-learning methods, and then examines the suitability of these approaches to quantitative trading data. This course primarily provides concepts and analytical approaches to analyzing financial data by using R language. Students will learn advanced methods and skills for Fintech
本科目教學目標Course Objectives:
教學型態Teaching Models: 成績考核方式Grading:
課堂教學+小組討論  平時成績General Performance:20%
期中考Midterm Exam:30%
期末考Final exam:30%
其它 Other:20%
參考書目Textbooks/References:
SDGs指標:
UCAN職業項目:
銀行金融業務人員,財務人才銀行金融業務人員
課程更新狀態:
課程匯入時間Import Time:2020-01-17 14:49:47
最後更新時間Last Modified:,更新人modified by: