開課班級Class: 授課教師Teacher: 學分數Credits:
碩專資管一 蔡正發 3
課程大綱Course Description:
深度學習是基於學習呈現的人工神經網路中的機器學習技術的一部分。學習可以是屬於有監督的、半監督的或無監督的機制。本課程將教授諸如深度神經網路、深度信念網路,遞歸神經網路和卷積神經網路之類的深度學習架構,因為它們已成功應用於計算機視覺,機器視覺,語音識別,自然語言處理,音頻識別等領域,社群網路過濾,機器翻譯,生物資訊學,藥物設計,醫學圖像分析,材料檢查和棋盤遊戲程式等,它們產生的結果可與人類專家的表現相媲美,甚至在某些情況下可以超過人類專家的表現。學生在本課程中之作業呈現可以選擇論文研讀報告或是技術實作。
English Outline:
Deep learning is part of a broader family of machine learning techniques based on artificial neural networks with representation learning. Learning can be supervised, semi-supervised or unsupervised. This course will teach deep-learning architectures such as deep neural networks, deep belief networks, recurrent neural networks and convolutional neural networks, since they have been successfully applied to fields including computer vision, machine vision, speech recognition, natural language processing, audio recognition, social network filtering, machine translation, bioinformatics, drug design, medical image analysis, material inspection and board game programs, where they have produced results comparable to and in some cases surpassing human expert performance. The students can choose paper presentation or project implementation for assignments in this course.
本科目教學目標Course Objectives:
1.教導學生熟悉人工智慧的現況及未來發展趨勢
2.教導學生熟悉機器學習的相關方法與技術
3.教導學生熟悉深度學習的相關方法與技術
4.教導學生熟悉深度學習的相關方法與技術之開發與程式設計
5.教導學生熟悉深度學習的相關應用領域
教學型態Teaching Models: 成績考核方式Grading:
課堂教學+實習 (校內、校外)+遠距輔助教學(同步、非同步)  平時成績General Performance:25%
期中考Midterm Exam:25%
期末考Final exam:20%
其它 Other:論文研讀報告或是技術實作30%
參考書目Textbooks/References:
Deep Learning 深度學習基礎,Nikhil Buduma著,藍子軒譯,碁峰出版。
SDGs指標:
UCAN職業項目:
課程更新狀態:
課程匯入時間Import Time:2021-01-18 11:03:50
最後更新時間Last Modified:,更新人modified by: