開課班級Class: | 授課教師Teacher: | 學分數Credits: |
碩生機一A | 張仲良 | 3 |
課程大綱Course Description: |
本課程的學習主軸在於了解學習類神經網路的基本理論與應用,包含類神經網路的發展歷史、原理、種類與結構、各種神經網路的學習方法(指導型與非指導型)以及控制方式,此外,也包含了如何應用類神經網路來解決各種工程問題的實例討論,課程中也會補充說明如何使用模擬工具軟體來實現類神經網路,同時藉由期刊論文研讀與討論,暸解國內外類神經網路研究發展的方向,學生最終能習得該學理基礎與演算機制,奠定未來發展深度學習等人工智慧系統之能力。 |
English Outline: |
The purpose of this course is to understand the basic theory and application of artificial neural network (ANN), ANN history, principles, types and structures of networks, learning methods for various networks (supervised and non-unsupervised learning), and optimal control method. In addition, it also contains examples of how to apply a neural network to solve various engineering problems. The course will also explain how to use the Matlab software toolbox to implement a neural network. Meanwhile, students can learn about the development of neural network through the study and discussion of journal paper. Finally, students will eventually be able to learn the theoretical foundation to prepare for learning artificial intelligence systems such as deep learning in the future. |
本科目教學目標Course Objectives: |
1.教育學生具備活用生物機電等領域之進階專業領域知能。 2.強化學生獨立思考、創新研發、規劃設計與實作執行之能力。 3.具跨領域整合與團隊合作之工作紀律涵養,以及創造工程科技與生物產業技術之趨勢。 |
教學型態Teaching Models: | 成績考核方式Grading: |
課堂教學+小組討論 | 平時成績General Performance:15% 期中考Midterm Exam:20% 期末考Final exam:35% 其它 Other:期末考(書面報告15%; 口頭報告20%);作業:15%,出缺勤15% |
參考書目Textbooks/References: |
1. Simon Haykin. (1998). Neural Networks: A Comprehensive Foundation. Macmillan College Publishing Company. ISBN:0132733501 2. 羅華強,類神經網路:MATLAB的應用 (第三版),高立圖書,ISBN:9789864128570 3. S. Russell and P. Norvig. Artificial Intelligence: a modern approach. Prentice Hall. ISBN0-13-080302-2 |
SDGs指標: |
UCAN職業項目: |
課程更新狀態: | 課程匯入時間Import Time:2020-07-07 13:43:48 |
最後更新時間Last Modified:,更新人modified by: |