開課班級Class: | 授課教師Teacher: | 學分數Credits: |
四企管三A | 廖世義 | 3 |
課程大綱Course Description: |
本課程主要在讓學生對大數據有基本應用的概念,說明大數據分析應用在農業、製造業、商業行銷、線上零售業、健康照顧和金融業等不同領域,來說明大數據實際的在各產業運用,以滿足國際學生多樣化的背景。因此本課程的目的是讓學生熟悉大數據的應用和相關分析工具,落實在不同的產業面。首先介紹大數據資料的蒐集方法、應用成果、相關的技術分析的概念、資訊倫理與安全,因大數據易面臨到道德倫理等相關議題。同時以真實的資料庫案例進行深度討論與說明大數據應用的優點及限制。第二部分為介紹幾種演算法應用在不同的實際產業,透過應用軟體STATISTICA v13的資料探勘模組,如:購物籃分析、決策樹、分群技術等演算法,讓同學熟悉資料探索之應用。本課程期末將要求參與的同學分組進行實務上產業之調查與分析,針對同學感興趣的個案進行大數據的個案分析,撰寫一份期末專案報告,針對個案提出幾點經營管理的建議。 |
English Outline: |
This course provides Big Data concept and applications of Big Data analytics in different fields such as agriculture, manufacturing, marketing, online retailing, health care and banking. The objective of this course is to familiarize student with Big Data analysis as a tool for addressing the application in different fields. The course begins with a basic introduction to big data, as well as associated technical, conceptual and ethical challenges. Strengths and limitations of big data research are discussed in depth using real-world examples. The next part is analysis implementation of actual cases by introducing and applying special algorithms in different fields, familiar with applications of data exploration software as STATISTICA (v13) and its data miner. These specific algorithms include association rules, decision tree, clustering, and classification. Students then engage in case study exercises in which small groups of students develop and present a big data concept for a specific real-world case. Attending this course, students will have an opportunity to access to real data from different industries and know how to analysis the data with problem based learning. The goal by the end of this semester is for student to have “analytics portfolio” consisting of data analytics skill that students can use for their future career. |
本科目教學目標Course Objectives: |
1. 學生能夠運用創新教學所教授的方法提獨立進行建構完整的產業應用模型,並進行各領域的大數據分析報表呈現,提升其實務能力。 2. 學生能夠透過本課程學習同儕間團隊合作,有效進行分工、期程規劃、蒐集與整理數據等事項,進而完成提案計畫,從中學習獨立思考、動手實作、良性競爭。 3. 建立一套完整的統計方法與資料分析混成式教材、教具及學生的學習歷程檔案供相關課程的教學參考。 4. 強化企業管理學系跨領域之能力,各式期刊的閱讀與剖析,幫助企業管理系學生未來與業界接軌,符合業界期待。 |
教學型態Teaching Models: | 成績考核方式Grading: |
課堂教學+小組討論 | 平時成績General Performance:25% 期中考Midterm Exam:30% 期末考Final exam:30% 其它 Other:出缺勤 15% |
參考書目Textbooks/References: |
授課用書:教師自編教材(大數據分析) 參考用書1:大數據概論,謝邦昌, 鄭宇庭著(2016),新陸書局出版。 參考用書2人工智慧與機器學習發展以SPSS Modeler為範例, 廖述賢, 溫志皓著(2019),博碩出版。 |
SDGs指標: |
![]() ![]() ![]() ![]() |
UCAN職業項目: |
一般管理人才,行銷管理人才,企業資訊管理人才 |
課程更新狀態: | 課程匯入時間Import Time:2023-02-01 09:40:56 |
最後更新時間Last Modified:2023-03-03 11:54:31,更新人modified by:廖世義 |